

Chapitre 3 : Comment décrire un mouvement ? Séance 2

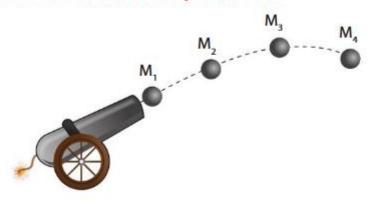
III. Vecteur vitesse.

1. Calculer une vitesse.

Exercice A1

Une course hors normes

| Exploiter des informations ; effectuer des calculs.


Au mois d'août 2018, le Français Xavier Thévenard remportait l'ultra-trail du Mont-Blanc en 20 h 44 min 16 s. Le deuxième de cette course de montagne a mis 21 h 31 min 37 s pour boucler le parcours de 171 km.

- 1. Calculer la valeur de la vitesse moyenne, en $m \cdot \bar{s}^1$, sur l'ensemble de la course :
- a. du vainqueur;
- du deuxième de la course.
- 2. a. Une telle précision de chronométrage était-elle la plus adaptée pour départager ces deux concurrents?
- Proposer cependant une explication de ce choix d'échelle temporelle.

2. Tracer un vecteur vitesse.

Exercice B1:

Tracer des vecteurs déplacement


Echelle: 1,0 cm pour 60 km/h.

La vitesse du boulet de canon est constante et égale à 120 km/h. Tracer en M1, M2 et M3 le vecteur deplacement ou vecteur vitesse du boulet.

Exercice B2: Exploiter un enregistrement.

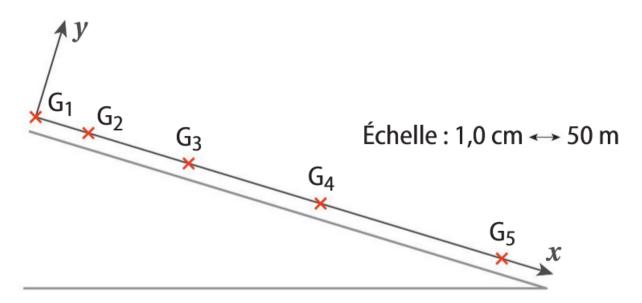
Un mobile autoporteur, modélisé par un point, est lancé sur une table horizontale.

Les positions du centre du mobile sont marquées à intervalles de temps réguliers de durée $\Delta t = 40$ ms.

- a. Recopier la figure ci-dessus et représenter à différents instants plusieurs vecteurs vitesse du point modélisant le mobile autoporteur.
- b. Caractériser le mouvement de ce point.

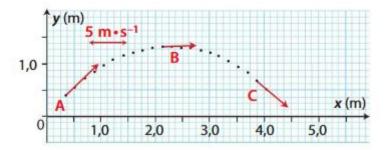
Exercice B3: Le manège.

Le passager d'un manège tourne à une vitesse de valeur constante égale à 60 km·h⁻¹.


- 1. Préciser le système et le référentiel d'étude de ce mouvement.
- 2. Quelle est la nature du mouvement évoqué dans l'énoncé ?
- **3.** Représenter la trajectoire en vue de dessus, ainsi que le vecteur vitesse en trois points de la trajectoire (échelle : $1 \text{ cm} \leftrightarrow 20 \text{ km} \cdot \text{h}^{-1}$).
- 4. Quelle(s) caractéristique(s) du vecteur vitesse évolue(nt) lors de ce mouvement ?

Exercice B4 : Le manège.

La chronophotographie d'une skieuse modélisée par un point, noté G, donne ses positions à intervalles de temps égaux $\Delta t = 5,0$ s.


Imprimer ou recopier la chronophotographie et tracer les vecteurs vitesse du point G aux positions 2 et 4 en prenant 1,0 cm ← \rightarrow 10 m·s⁻¹.

Étudier les variations d'un vecteur vitesse

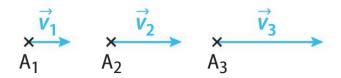
| Exploiter un graphique.

On a représenté les vecteurs vitesse d'un système mobile en trois points de sa trajectoire.

- 1. Déterminer les valeurs de la vitesse en A, B et C.
- 2. Quelle(s) caractéristique(s) du vecteur vitesse varie(nt) lors de ce mouvement ?

page 212

3. Utilisation des caratéristiques du vecteur vitesse.

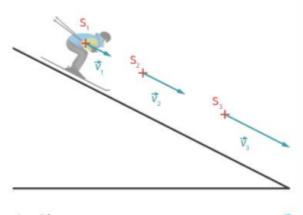

Exercice C1: Mouvement.

Les vecteurs vitesse d'un point d'un système en mouvement sont représentés ci-dessous.

- a. Déterminer les caractéristiques des trois vecteurs vitesse.
- b. En déduire la nature du mouvement.

Échelle: 1,0 cm \leftrightarrow 1,0 m·s⁻¹

Sens du mouvement



Exercice C2: page 212.

Énoncé

On a filmé un skieur puis pointé, à l'aide d'un logiciel d'analyse vidéo, son centre de gravité S à intervalles de temps réguliers.

La vitesse est représentée à l'échelle 1,0 cm ↔ 10 m·s⁻¹.

- 1. Décrire la trajectoire du skieur.
- 2. Dans quel référentiel le skieur a-t-il été filmé ?
- En tenant compte de l'échelle, déterminer la valeur de la vitesse v

 v

 v

 v

 v

 v

 v

 aux points S

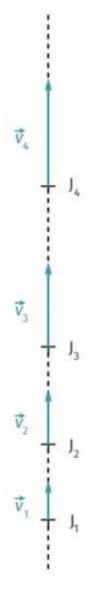
 s

 s

 et S

 s

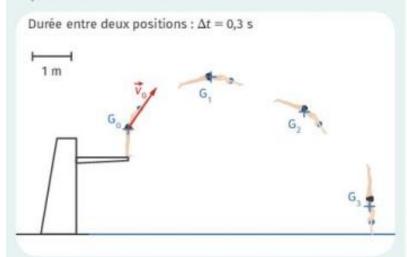
 .
- Décrire la variation du vecteur vitesse du skieur au cours de son mouvement.


📵 Décrire l'évolution du vecteur vitesse

✓ MATH : Le modèle du vecteur en physique

Les positions successives occupées à intervalles de temps égaux par Julie lorsqu'elle grimpe à la corde, dans le référentiel terrestre, sont représentées ci-contre.

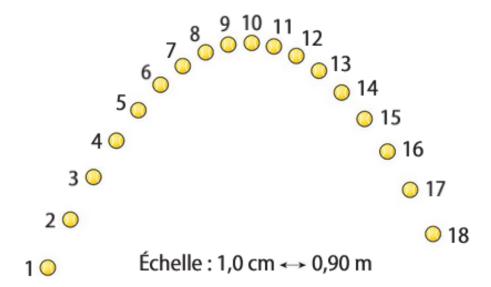
- Décrire l'évolution du vecteur vitesse de Julie.
- 2. Qualifier la nature de son mouvement.


Exercice 22 page 213.

Performances d'un nageur

- ✓ MATH: Le modèle du vecteur en physique
- REA : Effectuer des mesures. Effectuer des calculs littéraux et numériques

En natation, la chronophotographie permet d'analyser les performances du nageur. L'échelle choisie pour la représentation de la vitesse est : 1cm -- 4 m·s -1


- 1. Définir le système et le référentiel d'étude.
- Calculer la valeur du vecteur vitesse v

 1 et v

 2 du plongeur aux point G, G, et G.
- 4. Tracer le vecteur vitesse \vec{v}_1 et \vec{v}_2 du plongeur aux point G, G, et G,.
- Comment varient les caractéristiques du vecteur vitesse au cours du mouvement ? Qualifier alors le mouvement du plongeur.

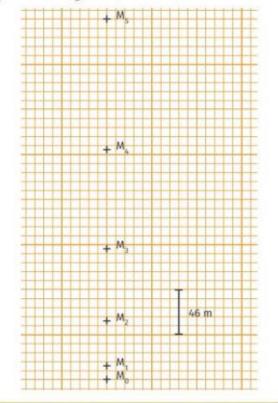
On réalise une chronophotographie du mouvement du centre G d'une balle de tennis dans le référentiel terrestre. La durée séparant deux images successives est $\Delta t = 100$ ms.

- a. Décrire le mouvement du centre de la balle entre les positions 1 et 10, puis entre les positions 10 et 18.
- b. Imprimer ou recopier la chronophotographie et représenter les vecteurs vitesse \vec{v}_1 , \vec{v}_6 , \vec{v}_{10} , \vec{v}_{13} et \vec{v}_{17} en utilisant une échelle adaptée.
- c. Indiquer, en justifiant, si les tracés des vecteurs vitesse valident la réponse à la question a.

 ANA: Exploiter des informations sur des supports variés

Dans le film Seul sur Mars, Mark Watney s'évanouit dans la fusée chargée de le ramener au vaisseau principal. Son collègue commente : « Il vient de se prendre 12 g, laissez-lui deux minutes ».

 À l'aide de la chronophotographie fournie, vérifier l'affirmation en gras.


Doc. 1 g et accélération

Avant de partir en expédition, les astronautes sont préparés à subir de fortes accélérations, communément quantifiées en g.

Sur Terre, lorsqu'une fusée « monte à 1 g », cela signifie que sa vitesse augmente de 9,81 mètres par seconde, en une seconde.

oc. 2 Positions de Mark pendant le décollage

On a représenté les positions successivement occupées par Mark. La durée séparant chaque position est égale à 0,50 seconde.

page 216

Représenter des vecteurs vitesse

Le code source Python suivant permet de représenter la trajectoire et les vecteurs vitesse successifs d'un système modélisé par un point lors de son mouvement.

```
1 from matplotlib import pyplot as plt
 3t = [0,1,2,3,4,5] # Domaine des dates (en s)

4x = [0,2,4,6,8,10] # Domaine des abscisses (en m)
 5y = [0,0,0,0,0,0] # Domaine des ordonnées (en m)
 7# Figure représentant la trajectoire y=f(x)
 8 plt.figure('Positions successives d\'un point en mouvement')
 9plt.xlabel('x(en m)')
10 plt.ylabel('y(en m)')
11 plt.plot(x,y,'ro',ms=2)
12 plt.axis('equal')
14# Tracé des vecteurs vitesse
15 for i in range(0,5) :
       plt.arrow(x[i], y[i], 0.8*(x[i+1]-x[i])/(t[i+1]-t[i]),
17
       0.8*(y[i+1]-y[i])/(t[i+1]-t[i]), width=0.05,
18
      length_includes_head="true",color='c')
19
20 plt.show()
```

- a. Déterminer le nombre de positions successives du point représentées et l'intervalle de temps Δt les séparant.
- b. Déterminer le nombre de vecteurs vitesse du point représentés et l'intervalle de temps ∆t les séparant.
- c. Déterminer les normes, en m·s-1, des trois premiers vecteurs vitesse du point représentés.
- d. Décrire la variation du vecteur vitesse pour le mouvement de ce point et en déduire la nature du mouvement.