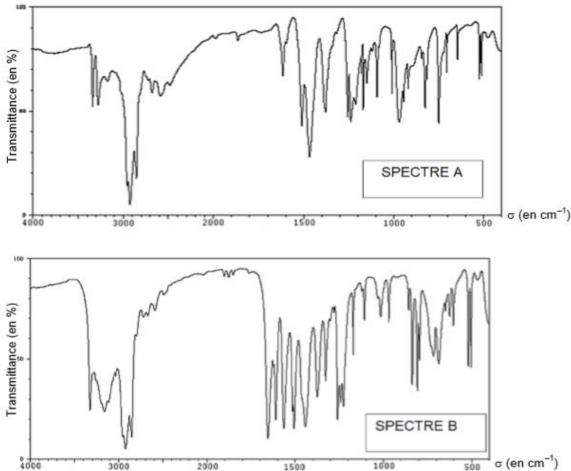
Nom: Prénom:

Exercice 1: Nomenclature.

Nommer les composés

Exercice 2 : Hydrolyse du paracétamol / 13 pts.


On dissout un comprimé de Doliprane® dans un ballon contenant 40 mL d'une solution d'acide sulfurique et on chauffe à reflux pendant une heure environ. En milieu acide, le paracétamol est hydrolysé en para-aminophénol selon la réaction, considérée comme totale, d'équation :

- ➤ M(C) = 12,0 g/mol M(H) = 1,00 g/mol M(O) = 16,0 g/mol M(N) = 14,0 g/mol
- Masse molaire du paracétamol : $M = 151 \text{ g.mol}^{-1}$
- Table de nombres d'onde en spectroscopie IR :

Liaison	Nombre d'onde $\sigma = \frac{1}{\lambda} \text{ (cm}^{-1}\text{)}$	
O-H	3200- 3670	
C=O	1650-1750	
C=C	1500-1650	
N-H amine primaire	3100-3500 deux bandes d'intensité moyenne	
N-H amide	3100-3500 une bande d'intensité forte	
C-H	2850-3000	

- 1. Entourer et nommer les groupes caractéristiques des deux molécules : paracétamol et para-aminophénol.
- 2. Nommer le sous-produit A, formé lors de l'hydrolyse et justifier le nom attribué.
- 3. Vérifier la masse molaire du paracétamol.
- **4.** Les deux spectres reproduits ci-dessous donnant la transmittance en fonction du nombre d'onde σ en cm⁻¹ sont ceux du paracétamol et du para-aminophénol.

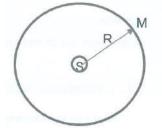
- **4.1.** De quel type de spectroscopie s'agit-il? Justifier, en vous appuyant sur un raisonnement quantitatif.
- **4.2**. Attribuer à chacune de ces deux espèces chimiques le spectre correspondant en justifiant votre raisonnement.
- **5**. Pour confirmer l'analyse IR, on réalise le spectre de RMN du para-aminophénol. Indiquer, en justifiant, le nombre de signaux présents ainsi que leur multiplicité.

Exercice 3 : Perturbation des phoques dans le port de Marseille/13pts.



A Marseille il y a l'OM mais il y aussi des phoques qui vont se reposer sur les iles du Frioul. Les nombreux bateaux perturbent le passage des phoques à cause de leur sonar. À 1 m de l'émetteur d'un sonar, le niveau d'intensité sonore maximal peut atteindre 240 dB.

- 1. Le sifflement d'un phoque se fait à la fréquence de 14,5 kHz.
- 1.1. Comment nomme-t-on cette fréquence?
- **1.2**. Calculer la valeur de la fréquence des deux premières harmoniques de ce sifflement.



On modélise le signal émis par un sonar par une fonction sinusoïdale du temps.

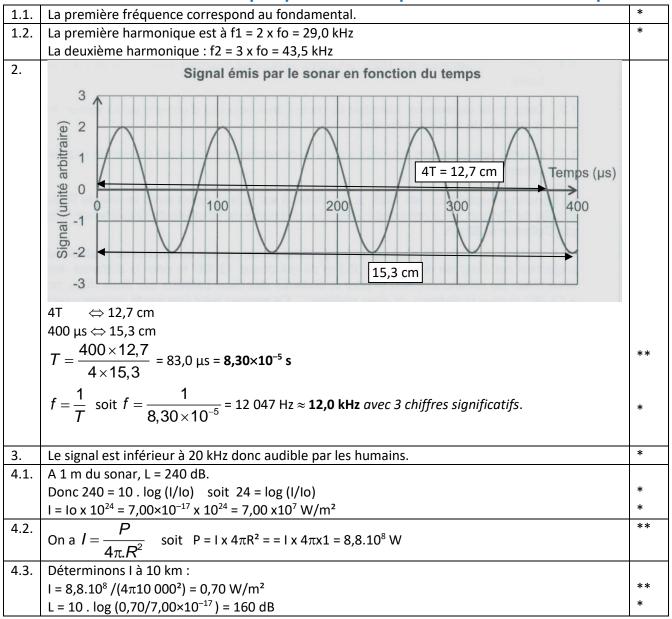
- 2. À l'aide de l'enregistrement ci-dessus du signal émis par le sonar, déterminer la fréquence d'émission f en kHz.
- 3. Ce signal appartient-il au domaine audible des êtres humains?
- 4. L'intensité sonore I reçue en un point M, situé à une distance R de la source acoustique S, est liée à la puissance

acoustique *P* de la source par la relation : $I = \frac{P}{4\pi R^2}$

- **4.1.** On considère généralement que dans l'eau le seuil d'audibilité est $I_0 = 7,00 \times 10^{-17} \, \text{W.m}^{-2}$. En déduire la valeur de l'intensité sonore maximale à 1 m du sonar.
- **4.2.** Montrer que la puissance de la source vaut 8,80×10⁸ W.
- 4.3. En déduire le niveau d'intensité sonore à 10 km, distance entre le port de Marseille et les iles du Frioul.

On donne : $L = 10 log \left(\frac{I}{I_o}\right)$

Correction de l'ex 1 : nomenclature / 4 pts


$CH_3 - CH_2 - CH - COO - CH_3$	$CH_3 - CH_2 - CO - CH - CH_3$
$_{\parallel}^{CH_{2}}$	$^{ m CH}_3$
CH_3	
2-éthylbutanoate de méthyle	2-méthylpentan-3-one
$CH_3 - CH_2 - CH - CHO$	$\mathrm{CH_3} - \mathrm{CHOH} - \mathrm{CH_3}$
CH ₃	
2-méthylbutanal	Propan-2-ol

Correction de l'ex 2 : Hydrolyse du paracétamol / 13 pts.

1.	OH hydroxyle	***	
	HN CH ₃ H ₂ N amine paracétamol		
2.	H ₃ C-C-OH C'est un acide carboxylique à deux carbones : acide éthanoïque		
3.	$M(P) = 8 \times M(C) + 2 \times M(O) + 1 \times M(N) + 9 \times M(H)$ = 8 \times 12 + 2 \times 16 + 14 + 9 = 151 g/mol		
4.1.	. Il s'agit d'une spectrocopie infra-rouge. Par définition le nombre d'onde σ = 1/ λ soit λ = 1/ σ		
	Dans notre cas : σ = 4000 cm-1 donc λ = 1/ 4000 = 0,25.10 ⁻³ cm = 2,5.10 ⁻⁶ m soit 2500 nm donc au-dessus du visible : IR.		
4.2.	La différence entre les 2 molécules se fait au niveau de la liaison c=O à 1650/1750 cm-1. On distingue ce pic vers le bas pour le spectre B.Le spectre B correspond donc au paracétamol (amide) et le spectre A au para-aminophénol.		
5.	On distingue 4 groupes d'hydrogène équivalent.		
	Bleu foncé : 0 voisin donc 0+1 = 1 pic : singulet		
	Bleu clair : 1 voisin donc 1+1 = 2 pics : duet		
	Violet: 1 voisin donc 1+1 = 2 pics: duet		
	Vert : 0 voisin donc 0+1 = 1 pic : singulet para-aminophénol		

Terminale S – Ondes et matière

Correction de l'ex 3 : Des phoques dans le port de Marseille/13 pts.

