Etude énergétique de système.

I. Etude de la chute libre d'une boule de pétanque.

1. Réalisation de la chronophotographie.

On étudie le mouvement à l'aide d'un logiciel de pointage. Ouvrir le fichier "Chute_2balles" On étudie une boule de pétanque (boulle de droite) de masse 650 g.

- Etalonner la vidéo : la hauteur de la salle fait 2 m 70. Placer l'origine du repère au sol.
- Pointer le centre de la boule lors de la chute (image 14 à image 32).
- Enregistrer les mesures.

2. Mise en lumière des mesures.

Ouvrir Regressi et ouvrir le fichier.

Energie potentielle

- 1. Calculer l'énergie potentielle Ep avec la référence Ep = 0 au point le plus bas de la chute.
- 2. Représenter le graphe Ep = f(t) et justifier l'allure de la courbe.

Energie cinétique Ec

- 3. Calculer la vitesse instantanée V.
- 4. Représenter V en fonction du temps. Commenter.
- 5. Calculer l'énergie cinétique Ec de la boulle de masse m connue.
- 6. Représenter le graphe Ec = f(t) et justifier l'allure de la courbe.
- 7. Représenter le graphe Ec = f(h) ou h représente la distance de chute. Commenter la courbe

Energie mécanique

- 8. Calculer l'énergie mécanique Em = Ec + Ep
- 9. Représenter le graphe Em = f(t) et modéliser. L'énergie mécanique est-elle constante ? Modéliser.
- 10. Superposer les graphes Ec, Ep et Em en fonction de t et noter les observations.
- 11. Que devient l'énergie potentielle lorsque l'altitude d'un solide diminue ?

II. Etude d'un pendule.

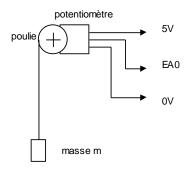
1. Réalisation de la chronophotographie.

- Ouvrir le fichier "pendule" et réaliser la chronophotographie du pendule de longueur 60 cm et de masse 100g.
- Tracer x= f (t). Déterminer la période du pendule.
- En déduire la longueur du pendule.

Aide : on rappelle que l'on en Seconde que la période T (en seconde) d'un pendule est donnée par la relation : T = 2. π . $\sqrt{\frac{l}{g}}$ avec l : longueur du pendule en mètre et g la gravité.

2. Mise en lumière des mesures.

- 1. Calculer l'énergie cinétique Ec.
- 2. Calculer l'énergie potentielle Ep avec la référence Ep = 0 au point d'équilibre.
- 3. Calculer l'énergie mécanique Em = Ec + Ep


- 4. Représenter le graphe Em = f(t). L'énergie mécanique peut-elle être considérée comme constante ?
- 5. Superposer les graphes Ec, Ep et Em en fonction de t et noter les observations.

III. Chute avec frottement

1. Montage expérimental

Utiliser une centrale d'acquisition afin de mesurer la variation de tension EA0 en fonction du temps.

Accrocher une masse de 50 g à l'extrémité du fil, déclencher l'acquisition puis lâcher la masse m.

2. Traitement des données.

Il faut transformer la tension mesurée en distance parcourue.

Déterminer la distance parcourue pour 1,0 V.

- 1. Créer la grandeur h correspondant à la hauteur d de chute.
- 2. Calculer la vitesse instantanée.
- 3. Calculer l'énergie cinétique Ec et l'énergie potentielle Ep. Quelle est la référence prise ?
- 4. Définir l'énergie mécanique Em = Ec + Ep
- 5. Représenter le graphe Em = f(t) et noter les observations. Justifier l'allure de Em. Noter la valeur de Em au départ.
- 6. Superposer les graphes Ec, Ep et Em en fonction de t et noter les observations.
- 7. Définir Wf travail des forces de frottement par Wf = Em(départ) Em
- 8. Représenter le graphe Wf = f(h). Quelle est l'allure du graphe ? Quelle hypothèse peut-on émettre ?
- 9. Modéliser la courbe Wf = f(h) et donner la valeur des forces de frottement.

IV. Etude des oscillations avec Pendulor : Y-a-t-il conservation de l'énergie ?

Réaliser un enregistrement avec Pendulor du mouvement d'un pendule.

A l'aide de Regressi:

- Déterminer la pseudo-période.
- Convertir la mesure de tension en angle.
- Créer la grandeur Ec correspondant à l'énergie cinétique (penser à la vitesse angulaire).
- Créer la grandeur Epp correspondant à l'énergie potentielle de pesanteur. Quelle est la référence prise pour Epp = 0 J ?
- Créer la grandeur Em correspondant à l'énergie mécanique du pendule.
- Tracer les courbes de : Ec, Ep et Em en fonction du temps.
- Expliquer ce qui se passe du point de vue énergétique lors des oscillations.
- Que peut-on dire de l'énergie mécanique ? Expliquer.